

Obesity, Diet and Type II Diabetes Risk

¹Terresa Lehman, ^{1,2}Luke Ratnasinghe, ¹Rama Modali, ¹Mike Seddon,

³K Nasaruddin,³JB Vijayakumar, ⁴Charles J Spurgeon, ⁴Mani K. Radha Mani, ⁴Bhaskar Seema, ⁴P Smitha, ⁴Giriraj Chandak

¹BioServe Biotechnologies, Beltsville, MD, USA, ²GenomicNanosystems LLC, Beltsville, MD, USA, ³Bioserve Biotechnologies (India), Ltd, Hyderabad, India, ⁴Center for Cellular and Molecular Biology, Hyderabad, India

Introduction

Results

This study examines the association between obesity and risk of type II diabetes (T2D) in a large multiethnic observational study. We examined effect modification of the obesity-T2D association by race and physical activity.

The present study also examines the relationship between genotypes and T2D risk in a nested case-control study.

Methods

The Global Epidemiology Study. The Global Epidemiology Study (GES) is a multinational study to assess disease risk factors. Subjects were recruited to the GES from countries including the

	South Indian Controls	South Indian Cases	P-Value	North Indian Controls	North Indian Cases	P-Value	Polish Caucasian Controls	Polish Caucasian Cases	P-Value	Caucasian American Controls	Caucasian American Cases	P-Value
Age (Years)*	50.22 (9.80)	57.11 (11.0)	<0.0001	48.67 (9.8)	58.21 (11.4)	<0.0001	56.12 (6.26)	58.34 (13.09)	<0.0001	56.35 (13.11)	61.26 (13.32)	<0.0001
Gender Male Female	1447 (57.5%) 1068 (42.5%)	1903 (62.7%) 1131 (37.3%)	<0.0001	111 (64.5%) 61 (35.5%)	195 (58.2%) 140 (41.8%)	<0.17	485 (41.07%) 696 (58.93%)	639 (59.09%) 923 (40.91%)	<0.934	2312 (49.01%) 2405 (50.99%)	1971 (50.71%) 1916 (49.29%)	<0.12
Smoking No Yes	1385 (55.0%) 1135 (45.0%)	1943 (63.9%) 1097 (36.1%)	<0.0001	110 (64.0%) 62 (36.0%)	232 (69.3%) 103 (30.75%)	<0.23	694 (58.76%) 487 (41.24%)	964 (61.56%) 602 (38.44%)	<0.14	2391 (50.60%) 2325 (49.40%)	1699 (43.60%) 2197(56.40%)	<0.0001
Alcohol No Yes	2153 (85.8%) 357 (14.2%)	2692 (88.8%) 338 (11.2%)	<0.001	133 (77.8%) 38 (22.2%)	286 (85.9%) 47 (14.1%)	<0.3	710 (60.12%) 471 (39.88%)	1261 (80.83%) 299 (19.17%)	<0.0001	2640 (56.27%) 2052 (43.73%)	2962 (76.36%) 917 (23.64%)	<0.0001
Alcohol No	2153 (85.8%)	2692 (88.8%)		133 (77.8%)	286 (85.9%)		710 (60.12%)	1261 (80.83%)		2640 (56.27%)	2962 (76.36%)	

United States, Tunisia, Poland and India. The GES is linked to the Global Repository that houses biomaterial. For diabetes, subjects provided informed consent and were asked about diet and health behaviors during in-person interviews using the same translated survey instrument.

Epidemiology Study. We examined the association between obesity and type II diabetes risk among 11,455 type II diabetes cases and 12,837 disease-free controls including 3,369 Indian cases and 2,687 Indian Controls.

SNPlates - Nested Case-Control Study. The diabetes SNPlates are a nested case-control study within the GES study. The cases consist of 360 subjects diagnosed with T2D and 360 controls matched to cases on age (\pm 5 years), race, gender and BMI in 1:1 ratio. Selection of cases and controls was independent of genotype.

Covariate data. Data from the baseline questionnaire and medical assessment included data on age, gender, race, diet, physical activity, smoking and alcohol consumption.

Genotyping. DNA was extracted from lymphocytes of study participants and the samples genotyped. Genotyping was conducted by high-throughput chip-based matrix-assisted laser desorption time-of-flight mass spectrometry utilizing the MassEXTEND reaction (Sequenom, Inc. San Diego, CA). PCR primers and extension primers were designed using SpectroDESIGNER software (Sequenom, Inc.) and synthesized at BioServe.

Statistical Analyses:

Cross tabulations with Chi square tests and t-tests were

Fruits (servings/day)*	0.73 (1.1)	1.12 (1.4)	<0.0001	1.09 (1.3)	1.59 (1.6)	<0.0005	1.30 (0.79)	1.18 (0.67)	<0.0001	1.74 (1.17)	1.85 (1.30)	<0.0001
Wholegrains (servings/day)*	13.51 (4.3)	11.48 (5.8)	<0.0001	13.31 (4.6)	11.01 (5.5)	<0.0001	0.73 (0.76)	1.59 (0.86)	<0.0001	1.74 (1.26)	1.93 (1.43)	<0.0001
Dairy prod. (servings/day)*	3.36 (2.3)	2.98 (2.6)	<0.0001	3.48 (2.5)	3.2 (2.8)	<0.30	1.49 (0.99)	1.57 (0.73)	<0.02	1.77 (1.29)	1.74 (1.21)	<0.24
Red meat (Times/week)*	0.92 (1.13)	1.28 (1.73)	<0.0001	1.01 (1.4)	0.95 (1.5)	<0.67	3.37 (1.70)	2.03 (1.39)	<0.0001	3.09 (2.39)	3.32 (2.48)	<0.0001
Fish (Times/week)*	0.44 (0.8)	0.82 (1.7)	<0.0001	0.50 (0.8)	0.55 (1.3)	<0.6	1.15 (0.83)	1.18 (0.67)	<0.23	1.41 (1.22)	1.27 (1.16)	<0.0001
Exercise (Minutes/week)* BMI, Kg/m ^{2*}	105.20 (189.3) 23.29 (4.2)	152.71 (263.5) 24.87 (4.1)	<0.0001 <0.0001	134.22 (192.6) 24.45 (4.4)	91.30 (126.0) 25.98 (4.1)	<0.003 <0.0001	203.07 (304.09) 25.95 (3.53)	113.15 (313.72) 28.92 (5.15)	<0.0001 <0.0001	210.79 (359.57) 27.63 (5.55)	138.29 (322.13) 32.30 (7.25)	<0.0001 <0.0001

* Mean [Standard Deviation]

Table 2. Obesity and Diabetes Risk

Body Mass Index	South Indian	North Indian	Polish-Caucasian	Caucasian-American	
	OR (95% CI) [Cases/Controls]	OR (95% CI) [Cases/Controls]	OR (95% CI) [Cases/Controls]	OR (95% CI) [Cases/Controls]	
18.5 to 24.9 [Healthy weight] 25.0 to 29.9 [Overweight] 30 or higher [Obese]	1.0 (ref) [1528/1468] 1.66 (1.46-1.90) [1025/603] 2.10 (1.68-2.63) [358/144] p-trend<0.001	1.0 (ref) [122/93] 2.55 (1.59-4.08) [155/47] 2.00 (1.02-3.90) [50/19] p-trend<0.001	1.0 (ref) [223/464] 2.02 (1.64-2.49) [566/570] 9.35(7.22-112.10) [569/140] p-trend<0.001	1.0 (ref) [412/1581] 2.19 (1.90-2.53) [1022/1808] 8.04 (6.99-9.25) [2142/1279] p-trend<0.001	

p-value for trend estimated from logistic regression models. Odds Ratios adjusted for age, gender, and smoking pack-years.

Table 3. Obesity, Exercise and Diabetes Risk Stratified by Race

Dravidian South Indian	Healthy-Weight	Over-Weight	Obese
	OR (95% CI) [Cases/Controls]	OR (95% CI) [Cases/Controls]	OR (95% CI) [Cases/Controls]
Exercise (Minutes/week)	1.0 (ref) [700/916]	1.0 (ref) [436/364]	1.0 (ref) [202/100]
Tertile 1: 0	2.39 (1.87-3.06) [239/134]	2.51 (1.75-3.59) [163/58]	2.29 (1.22-4.31) [63/18]
Tertile 2: 0-150	1.93 (1.63-2.30) [589/418]	2.16 (1.68-2.76) [425/180]	2.57 (1.47-4.49) [92/26]
Tertile3: >150	p-trend<0.0001	p-trend<0.0001	p-trend<0.0001
Caucasian-American	Healthy-Weight	Over-Weight	Obese
	OR (95% CI) [Cases/Controls]	OR (95% CI) [Cases/Controls]	OR (95% CI) [Cases/Controls]
Exerise (Minutes/week)	1.0 (ref) [121/269]	1.0 (ref) [287/345]	1.0 (ref) [892/371]
Tertile 1: 0	0.61 (0.44-0.84) [135/524]	0.75 (0.60-0.94) [358/630]	0.72 (0.60-0.85) [695/428]
Tertile 2: 0-150	0.43 (0.32-0.59) [142/772]	0.55 (0.44-0.69) [334/817]	0.46 (0.38-0.55) [478/462]
Tertile3: >150	p-trend<0.0001	p-trend<0.0001	p-trend<0.0001

conducted to determine the association between diabetes status and potential confounders

 Unconditional logistic regression was used to compute odds ratios (ORs) and 95% confidence intervals (CIs). The variables used in the multivariate analyses were age, pack-years of smoking and BMI as continuous variables and race as a categorical variable.

•Potential confounding of the association between obesity or genotype and T2D risk was explored using Spearman rank correlation analyses and multivariate logistic regression models, including stepwise regression models. If the potential confounder caused a >20% change in the β coefficient, it was kept in the model for further analyses.

All p-values shown are 2-sided.

All statistical analyses were performed using the software package STATA (STATA Corporation, College Station, TX).

Discussion

We observed a consistent increase in T2D risk with increased Body Mass Index (BMI). The increase in diabetes risk was observed in all race groups including Caucasian-Americans, Polish-Caucasians, South-Indians and North-Indians. However, the magnitude of the association was lower among Indian individuals. In table 3 we show that diabetes risk can be potentially reduced in healthy-weight, over-weight and obese individuals with increased physical activity among American and Polish (data not shown) Caucasian individuals. However, among South Indian and North Indian (data not shown) individuals increased physical activity did not reduce T2D risk. In summary, our study shows that obesity is strong risk factor for T2D and that exercise may reduce risk among Caucasians but not Indians. Adjusted for age, gender, race and smoking packyears.

Table 4. Genotype and Diabetes Risk in Dravidian South Indians

HEX: Controls 111875		OR _{crude}	OR _{adjusted*}	
rgous WT [GG] 141 (40%)		1.00 (Ref.)	1.00 (Ref.)	
leterozygous [AG] 157 (44%)		1.59 (1.14-2.22)	1.75 (1.23-2.46)	
Homozygous VT [AA] 58 (16%)		1.81 (1.18-2.77)	2.11 (1.35-3.29)	
356	355			
P _{ch}	_{i2} =0.006			
Controls	Cases	OR _{crude}	OR _{adjusted*}	
241 (69%)	214 (61%)	1.00 (Ref.)	1.00 (Ref.)	
93 (27%)	125 (35%)	1.51(1.09-2.10)	1.44 (1.03-2.01)	
15 (4%)	13 (4%)	0.98 (0.45-2.10)	0.88 (0.40-1.91)	
349	352			
P _{chi2}	=0.040			
Controls	Cases	OR _{crude}	OR _{adjusted*}	
Homozygous WT [AA] 284 (81%)		1.00 (Ref.)	1.00 (Ref.)	
Heterozygous [AG] 62 (18%)		1.50 (1.04-2.16)	1.45 (0.99-2.12)	
Homozygous VT [GG] 4 (1%)		1.91(0.55-6.61)	1.83 (0.51-6.53)	
350	352			
	=0.065			
		141 (40%) 101 (29%) 157 (44%) 179 (50%) 58 (16%) 75 (21%) 356 355 93 (27%) 214 (61%) 125 (35%) 352 93 (27%) 125 (35%) 15 (4%) 352 93 (27%) 125 (35%) 15 (4%) 352 93 (27%) 125 (35%) 15 (4%) 352 93 (27%) 125 (35%) 15 (4%) 352 93 (27%) 125 (35%) 15 (4%) 352 93 (27%) 125 (35%) 125 (35%) 352 349 352 93 (27%) 125 (35%) 15 (4%) 352 349 352 9 260 (74%) 284 (81%) 260 (74%) 62 (18%) 85 (24%) 4 (1%) 7 (2%) 350 352	Image: Note of the set of the s	

The association between genotype and T2D risk is being extensively studied. However, less focus has been placed on people of the Indian subcontinent. We show here that genotype distribution among Indian Dravidians is different from that reported for Asians in NCBI [rs1111875: AA=0.47, AG=0.47, GG=0.06, rs1153188: TT=0.96, AT=0.04, rs12779790: AA=0.78, AG=0.20 GG=0.02]. The HHEX homeobox gene SNP (rs1111875) has been shown to be associated with risk for type-2 diabetes in several studies including Caucasians and Japanese. We show that a significant association exists between rs1111875 and T2D among Dravidian Indians. The SNP near the Dermcidin gene (rs1153188), an antimicrobial peptide gene, and the SNP located between the CDC123 and CAMK1D genes (rs12779790), were also marginally associated with T2D risk. The Hardy-Weinberg Principle was tested with χ^2 tests and all genotypes were found to be in equilibrium.

* Logistic regression model adjusted for age, gender, BMI and packyears of smoking