STEMGENT®

mRNA for Integration-free Cell Fate Manipulation

BRAD HAMILTON

ISSCR 2012 – YOKOHAMA, JAPAN

JUNE 13TH, 2012

Presentation Outline

- mRNA Reprogramming System
- miRNA Enhanced mRNA Reprogramming
- mRNA for Differentiation

Advantages of mRNA Reprogramming

- Fastest Method
 - Colonies emerge in 12 days
- Most Efficient (>1%)
- Non-integrating
- Non-viral/non-DNA
 - No screening required
- Safe

mRNA Reprogramming System

- Functionally validated for iPS cell generation
- Kit composition
 - mRNA Reprogramming Factors: hOSKML
 - Pluriton™ Reprogramming Medium
 - B18R, Recombinant Protein

Day 20 Primary iPS Colony from Parkinson's Disease fibroblasts, StainAlive™ Tra-1-81

- Supporting Reagents
 - Newborn Foreskin Fibroblasts, Irradiated (NuFFs-RQ)
 - StainAlive™ TRA-1-60/81 Antibodies

mRNA Reprogramming Timeline

mRNA Reprogramming of Patient Fibroblasts

Fibroblast	TRA-1-60+ Colonies Day 16
Normal aHDF #1	68
Normal aHDF #2	190
Normal aHDF #3	128
Diseased aHDF #1	26
Diseased aHDF #2	38
Diseased aHDF #3	2
Diseased aHDF #4	619
BJ Fibroblast (Control)	674

- Reprogram in similar timeframe
- Range in productivity
- Reflection of proliferation rate

Primary mRNA iPS colonies Day 16, Diseased aHDF #4

Homogeneous iPS Cell Colonies

- Uniform pluripotency
- Robust primary colony formation
- Efficient post-isolation line establishment
- No screening

p0 Primary Reprogramming Culture

Stable, Pluripotent iPS Cell Lines

Courtesy of WIBR - Dirk Hockemeyer and Johanna Goldmann

The University Of Sheffield.

IEO European Institute of Oncology

Presentation Outline

- mRNA Reprogramming System
- miRNA Enhanced mRNA Reprogramming
- mRNA for Differentiation

miRNAs and Reprogramming

Embryonic stem cell–specific microRNAs promote induced pluripotency

Robert L Judson, Joshua E Babiarz, Monica Venere & Robert Blelloch

Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency

Frederick Anokye-Danso,¹ Chinmay M. Trivedi,² Denise Juhr,⁵ Mudit Gupta,² Zheng Cui,¹ Ying Tian,¹ Yuzhen Zhang,¹ Wenli Yang,¹,⁴ Peter J. Gruber,³,⁴,⁵ Jonathan A. Epstein,¹,²,³,⁴ and Edward E. Morrisey¹,²,³,⁴,*

Reprogramming of Mouse and Human Cells to Pluripotency Using Mature MicroRNAs

Norikatsu Miyoshi,¹ Hideshi Ishii,¹,²,⁴,* Hiroaki Nagano,¹ Naotsugu Haraguchi,¹ Dyah Laksmi Dewi,¹ Yoshihiro Kano,¹ Shinpei Nishikawa,¹ Masahiro Tanemura,¹ Koshi Mimori,² Fumiaki Tanaka,² Toshiyuki Saito,³ Junichi Nishimura,¹ Ichiro Takemasa,¹ Tsunekazu Mizushima,¹ Masataka Ikeda,¹ Hirofumi Yamamoto,¹ Mitsugu Sekimoto,¹ Yuichiro Doki,¹ and Masaki Mori¹,²,4,*

¹Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan

²Department of Molecular and Cellular Biology, Division of Molecular and Surgical Oncology, Kyushu University,

Medical Institute of Bioregulation, Tsurumihara 4546, Beppu, Ohita 874-0838, Japan

³Transcriptome Profiling Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences,

Inage-Anagawa 4-9-1, Chiba, Chiba 263-8555, Japan

⁴These authors contributed equally to this work

¹Department of Medicine

²Department of Cell and Developmental Biology

³Cardiovascular Institute

⁴Institute for Regenerative Medicine

University of Pennsylvania, Philadelphia, PA 19104, USA

⁵The Cardiac Center, Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104, USA

Refractory Target Cells: Options?

mRNA Only

mRNA + miRNA

miRNA enhanced mRNA Reprogramming

- mRNA Reprogramming Factors: hOSKML
- Pluriton™ Reprogramming Medium
- B18R, Recombinant Protein
- Matrigel™ hES-qualified Matrix
- Stemfect™ RNA Transfection Kit
- Proprietary miRNA cocktail

Stemfect™ RNA Transfection

- Tunable control of protein expression
- Higher average protein expression
- Uniform transfection efficiency
- Excellent cell viability supports overnight transfection

Reduced # of mRNA Transfections: Stemfect™

- Diseased patient dermal fibroblasts
- mRNA cocktail only
- Day 12: TRA-1-81 colony counts
- Colonies in wells with as few as 6 transfections
- Maximal iPS productivity between 8-12 transfections

miRNA Enhanced Reprogramming: Timeline

miRNA Enhanced Reprogramming: Refractory Target Cells

mRNA Day 2 Day 5 Day 9 Day 11

mRNA + miRNA

miRNA Enhanced Reprogramming - Faster

Feeder-based mRNA Protocol

Day 5

Day 10

Day 12

Primary Colony Expansion

mRNA + miRNA iPS Cell Line Characterization

SSEA-3 OCT4 TRA-1-60 Hoechst

- SSEA-4
- **NANOG**
- TRA-1-81
- Hoechst

- Diseased patient dermal fibroblast
- Pluripotent
- Stable Karyotype
- No screening
- No subcloning

Collaborative Results: mRNA + miRNA

	Cell Lines Tested	Lines Established
MSSM	Control + 3 HDF	4/4
HSCI	1 HDF	1/1
Children's Hospital Boston	1 HDF	1/1
NIH	Control + 3 HDF	3/3
NYSCF	3 HDF	3/3

- 5 independent labs
- 11/11: patient iPS lines
 - No dropouts
- Testing format for all:
 - miRNA cocktail
 - Stemfect™ RNATransfection Kit
 - No feeder layer in primary well
 - 6-well format

Benefits of miRNA Enhanced mRNA Reprogramming

- Faster than existing fastest mRNA method
 - Colonies in as few as 8 days
 - Colony isolation in 10-12 days
- Captures refractory lines
- Simplified protocol
 - Reduced # of transfections
 - Overnight transfections
 - 30 minutes of work per day

BJ mRNA iPS P1, Day 4 Without MEFs in Nutristem

Presentation Outline

- mRNA Reprogramming System
- miRNA Enhanced mRNA Reprogramming
- mRNA for Differentiation

Programming Cell Fate by Gene Delivery

Lineage	Factors	Reference
Muscle	MyoD	Davis <i>et al</i> . Cell 1987 Weintraub <i>et al</i> . PNAS 1989
Neural	Ascl1, Brn2, Myt1l, NeuroD1	Vierbuchen <i>et al</i> . Nature 2010 Pang <i>et al</i> . Nature 2011
Cardiac	Gata4, Mef2C, Tbx5	Leda <i>et al</i> . Cell 2010
Blood	Oct4	Szabo <i>et al</i> . Nature 2010
Pancreatic	Pdx1, MafA, Ngn3	Zhou <i>et al</i> . Nature 2009

5' G 5' UTR * hMyoD ORF * 3' UTR AAA_N 3'

MyoD mRNA-derived Mouse Myotubes Express Muscle-specific Markers

Directed Differentiation: NPCs to Dopaminergic Neurons

Summary of mRNA Developments

mRNA Reprogramming

- Fast, efficient, safe, non-viral/non-integrating iPS derivation
- No screening or subcloning required

miRNA Enhanced Reprogramming

- Faster derivation and isolation of iPS cell colonies (<2 weeks)
- Generates iPS cell lines from refractory target cells
- Non-toxic, overnight transfections (Stemfect)
- Amenable to defined culture environment

mRNA for Differentiation

Compatible with directed and transdifferentiation manipulations

Acknowledgments

Stemgent:

- Brad Hamilton
- Chenmei Luo
- Charles Martin
- Kevin Yi
- Rebekah Ashley
- Shuya Zhai
- Kerry Mahon
- Alice Chen

Whitehead – Jaenisch Lab

- Dirk Hockemeyer
- Johanna Goldmann
- Julien Muffat

CHB – hES Stem Cell Core

- Thorsten Schlaeger
- Andrew Ettenger

International Distribution: Miltenyi Biotec

mRNA REPROGRAMMING COURSE

Stemgent mRNA Reprogramming Courses in collaboration with

CSCB, University of Sheffield Sheffield, United Kingdom

OCTOBER 17 – 19, 2012 | SHEFFIELD, UK OCTOBER 23 – 25, 2012 | SHEFFIELD, UK

For more information, contact:
Training.courses@stemgent.com
www.stemgent.com

To register, contact: c.herridge@sheffield.ac.uk www.cscb.shef.ac.uk

